

The 13th International Conference on Innovation in Urban and Regional Planning
Methods, Models and Technologies for Future Cities and Regions

8-9-10 September 2025

UNIVERSITÀ
DI PAVIA

DICAR
DIPARTIMENTO INGEGNERIA
CIVILE ARCHITETTURA

BUILDING
ENGINEERING
ARCHITECTURE

URBANPROJECT
UP
LABORATORY

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro¹, Daniele La Rosa¹, Anacleto Rizzo², Riccardo Privitera¹

1 Università di Catania DICAR – Dipartimento Ingegneria Civile e Architettura

2 IRIDRA Srl, Florence, Italy

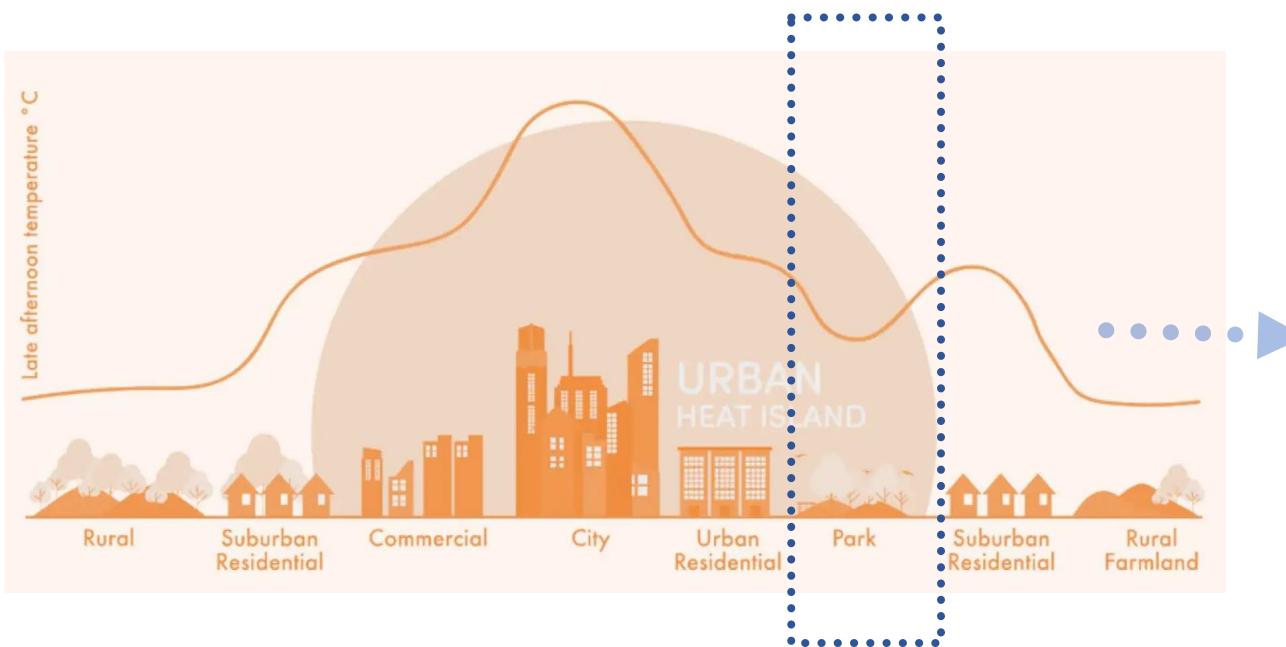
SESSION S_09 | Impact Assessment of Nature Based Solutions in Cities: Theoretical, Methodological and Practical Perspectives

Pavia - September 09, 2025

This research is part of the Project "Nature for sustainable cities: planning cost-effective and just solutions for urban issues", PRIN 2022, funded by European Union, Next Generation EU

Funded by
the European Union
NextGenerationEU

Ministero
dell'Università
e della Ricerca
Italiadomani
PIANO NAZIONALE DI RIPRESA E RESILIENZA


PATRONAGE

SPONSORSHIP

Blue and **green** elements, such as vegetation and water, can influence the urban microclimate by reducing the heat island effect and the high temperatures that characterize urban areas.

Quantifying the heat mitigation capacity of urban green spaces and comparing the different design solutions is essential for optimizing planning decisions

Reduction of air temperature through water evaporation and plant evapotranspiration and shade

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

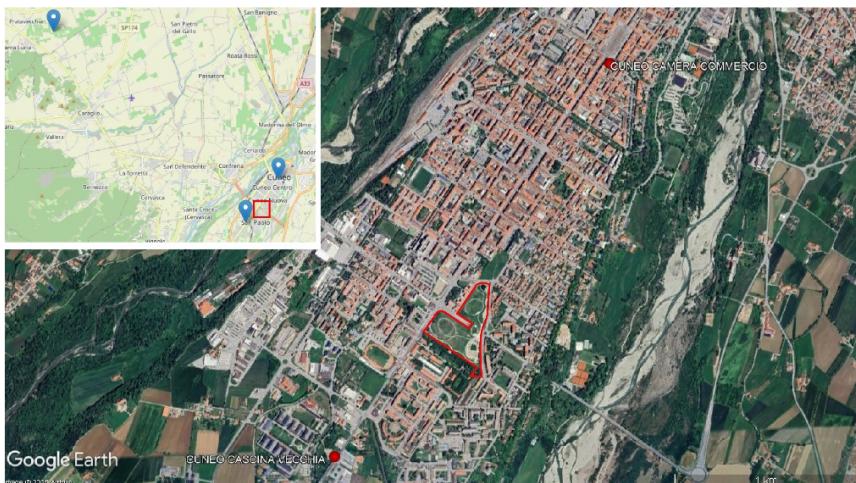
QUANTIFICATION OF BENEFITS

There are now several **tools** and **methods** to map and quantify regulating ecosystem services by simulating microclimate scenarios

- field measurements
- remote sensing techniques (satellite images as MODIS products used to derivate LST)
- numerical models (ENVI-met)

Advantages | Make the benefits of green and blue elements objective, by providing empirical data

Disadvantages | The use of these tools remains limited due to the complexity of the methods and the availability of the necessary input data


The aim is to make them more accessible and simplified so that they can become **systematic analyses** in future territorial planning and design processes.

Post-implementation monitoring of projects also assumes a central role: measuring the benefits produced generate useful data to support the replicability of similar interventions.

The **InVEST 3.15.0 Urban Cooling Model** was applied to compare four land cover scenarios for an undeveloped urban lot (approximately 8 ha) transformed into a park in the city of Cuneo

MODEL OUTPUT:

allows the simulation of the cooling capacity of vegetation by calculating the **heat mitigation index (HMI)** simulated air temperatures

Climatic stations

Dronero (reference station for rural area)
 and Cuneo Cascina Vecchia (reference station for urban area)

HEAT MITIGATION INDEX (HMI)

The model considers the effect of large green spaces (>2 ha) on each pixel by calculating the HMI (Eq. 4). If it is equal to CC, the pixel is unaffected by any large green spaces. To do so, the InVEST UC model uses a distance-weighted average of the CC values from the large green spaces and the pixel of interest (Eq. 3).

$$CC = 0.6 * shade + 0.2 * albedo + 0.2 * ETI$$

$$CC_{park_i} = \sum_{j \in radius_i} g_i \cdot CC_j \cdot e^{\left(\frac{-d(i,j)}{d_{cool}} \right)} \quad (3)$$

$$HM_i = \begin{cases} CC_i & \text{if } CC_i \geq CC_{park_i} \text{ or } GA_i < 2 \text{ ha} \\ CC_{park} & \text{otherwise} \end{cases} \quad (4)$$

SIMULATED AIR TEMPERATURE

is basically the difference between the maximum temperature in the city and the rural reference air temperature.

$$T_{air\ normmax,i} = T_{air,ref} + (1 - HM_i) * UHI_{max}$$

http://releases.naturalcapitalproject.org/investuserguide/latest/en/urban_cooling_model.html

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

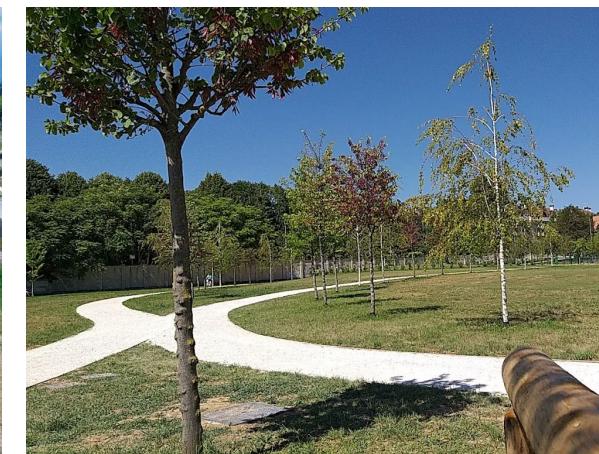
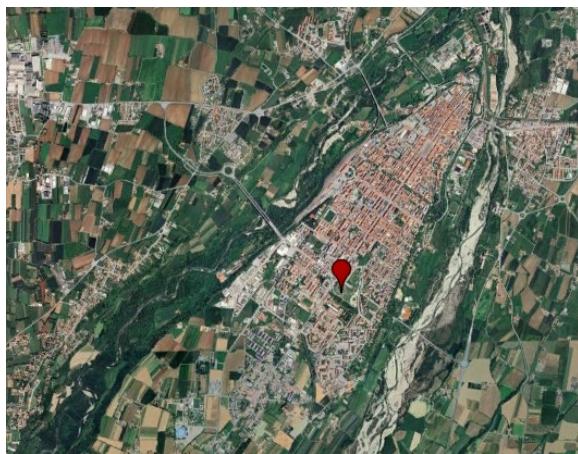
biophysical table

Table 1. Source of the data included in the biophysical table

land cover class	Shade	Kc	Albedo	Green area
Description	If trees h > 2m= 1	<ul style="list-style-type: none"> - Allen et al., (1998) FAO[14]. - Nistor et al., (2017) [15]; - invests Guide from - Zawadzka et. Al., (2021) [16]: 	<ul style="list-style-type: none"> - Masiero M., Amato G., Laghetto G., Davide Murgese D., Perino M., Allocco M., Cimini M. (2020) [17]; - Zawadzka et. Al., (2021); 	1= vegetation, the greenspace, water bodies (water bodies are assimilated to green areas in order to consider their cooling capacity too).

lucode	LC_DESC	shade	Kc	albedo	green_area
1	Meleto (inerbimento)	0	1.2	0.15	1
2	Pereto (inerbimento)	0	1.2	0.15	1
3	Ciliegio (inerbimento)	0	1.2	0.15	1
4	Pruneto	0	1.15	0.15	1
5	Arbusti tappezzanti	0	0.9	0.15	1
6	Arbusti	0	1	0.18	1
7	Aromatiche	0	0.9	0.15	1
8	Giuggiolo	0	1.15	0.15	1
9	Noccioleto	0	0.9	0.15	1
10	Prato fiorito	0	1.15	0.25	1
11	À Prato irriguo	0	1	0.25	1
12	Prato rustico estensivo	0	1.15	0.25	1
13	Piccoli frutti	0	1.05	0.15	1
14	Siepe arbustiva	0	1	0.15	1
15	Piante acquatiche	0	1.1	0.15	1
16	Vegetazione di sponda	0	1.2	0.15	1
17	Wetlands	0	1.05	0.09	1
18	À Asfalto	0	0.4	0.2	0

REFERENCE EVAPOTRANSPIRATION



$$ET_0 = 0.0013 \times 0.408 \times RA \times (T_{av} + 17) \times (TD - 0.0123P)^{0.76}$$

Modified Hargreaves (MH) formula Droogers e Allen (2002)

Temperature data recorded by the climatic stations in August 2024

INVEST input parameters	
Reference Air Temperature	31.1
UHI Effect	1.3
Air Blending Distance	250 m
Maximum Cooling Distance	5 m
Shade	0.3
Albedo	0.1
Evapotranspiration	0.6

The combination of weights (0.3, 0.1, 0.6) was applied to reflect the greater impact of evapotranspiration compared to shading, due to vegetation transpiration and water evaporation from water bodies

Photos taken during the construction of the Ferruccio Parri Park (2019 – 2022)

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

Photos taken during the site visit of the Ferruccio Parri Park (June 2025)

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

- Small fruits
- Plum orchard
- Aromatic plants
- Wildflower meadow
- Irrigated grassland
- Extensive grassland
- Aquatic Plants
- Paved surfaces with Lusern
- Stabilized gravel surface
- Stabilized gravel surface
- Orchard
- Hazelnut orchard
- Jujube orchard
- Cherry orchard
- Apple orchard
- Buildings
- Paved surfaces
- Bike lane
- Concrete impervious surface
- Riparian vegetation
- Water bodies

Scenario 1

Scenario 1 | Baseline (before project implementation)
 The ground cover is mainly extensive rustic grassland and to the south there is a row of sycamore maple (*Acer pseudoplatanus*).

Scenario 2

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

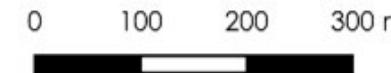
- Small fruits
- Plum orchard
- Aromatic plants
- Wildflower meadow
- Irrigated grassland
- Extensive grassland
- Aquatic Plants
- Paved surfaces with Luserna
- Stabilized gravel surface
- Stabilized gravel surface
- Orchard
- Hazelnut orchard
- Jujube orchard
- Cherry orchard
- Apple orchard
- Buildings
- Paved surfaces
- Bike lane
- Concrete impervious surface
- Riparian vegetation
- Water bodies

Scenario 3

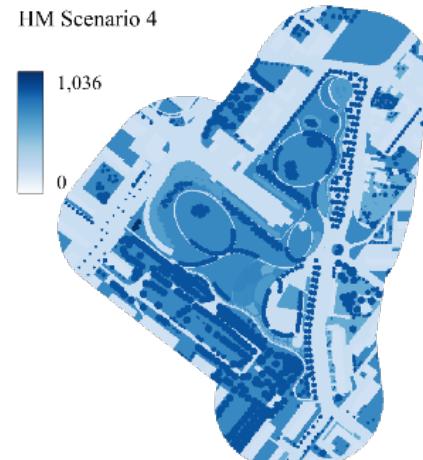
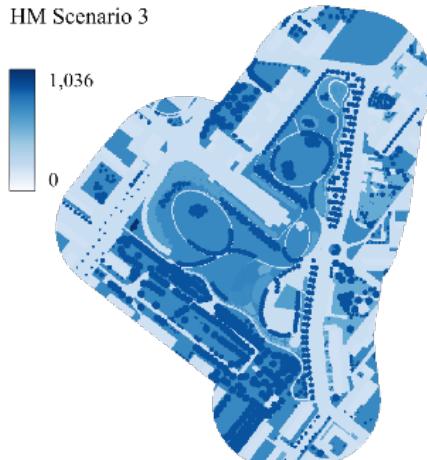
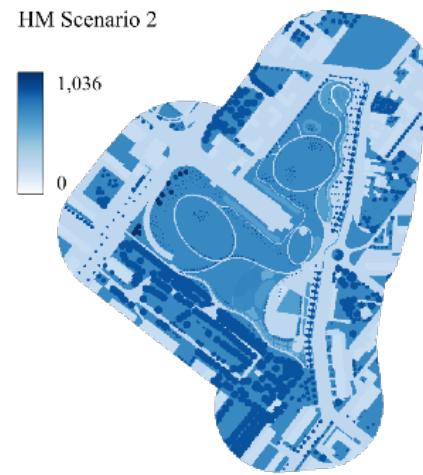
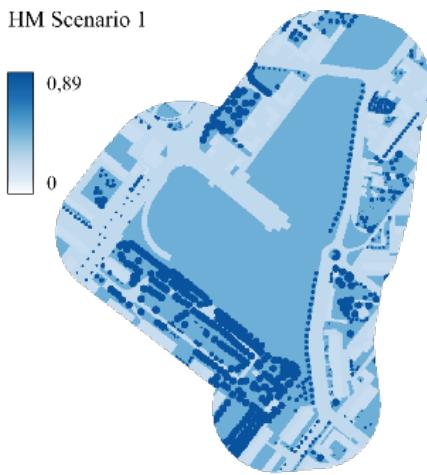
Scenario 3 | Project scenario after 10 years.

Vegetation growth is taken into account. For first-size trees planted with an initial trunk diameter of 20–25 cm, canopy diameters of approximately 8 meters are expected after 10 years.

Scenario 4



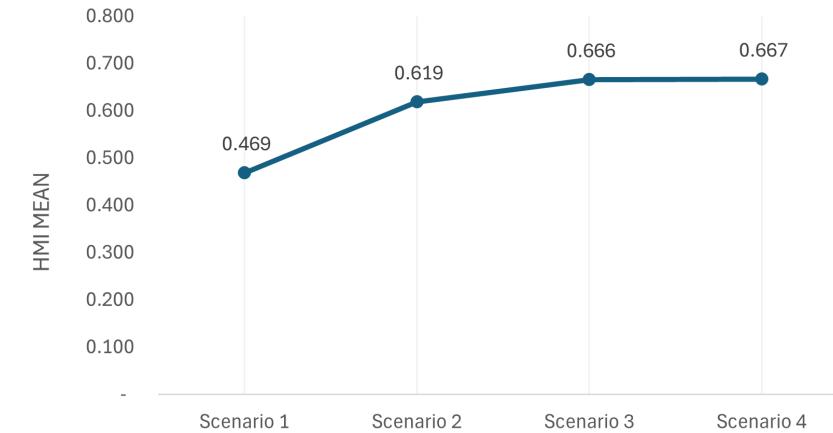
Scenario 4 | Project scenario after 10 years with increased water basin. Water bodies





influence air temperature through water evaporation. In this scenario, the surface area of the natural pond is doubled in order to evaluate the impact on the park.

LULC from :

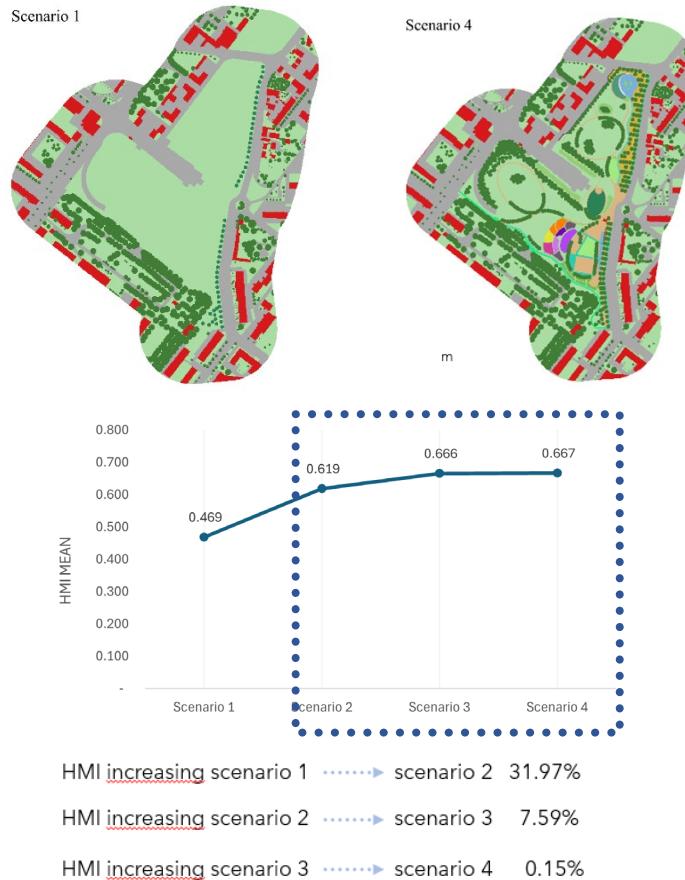
- Cartographic data 2024, Regione Piemonte,
- Google Earth Pro and Street View [images](#)

The HMI values show how the cooling effect within the park varies according to the different land covers


To compare the HMI within the park, the average of these values was calculated and compared:

HMI increasing scenario 1 scenario 2 31.97%

HMI increasing scenario 2 scenario 3 7.59%


HMI increasing scenario 3 scenario 4 0.15%

Average of the HM values within the park perimeter

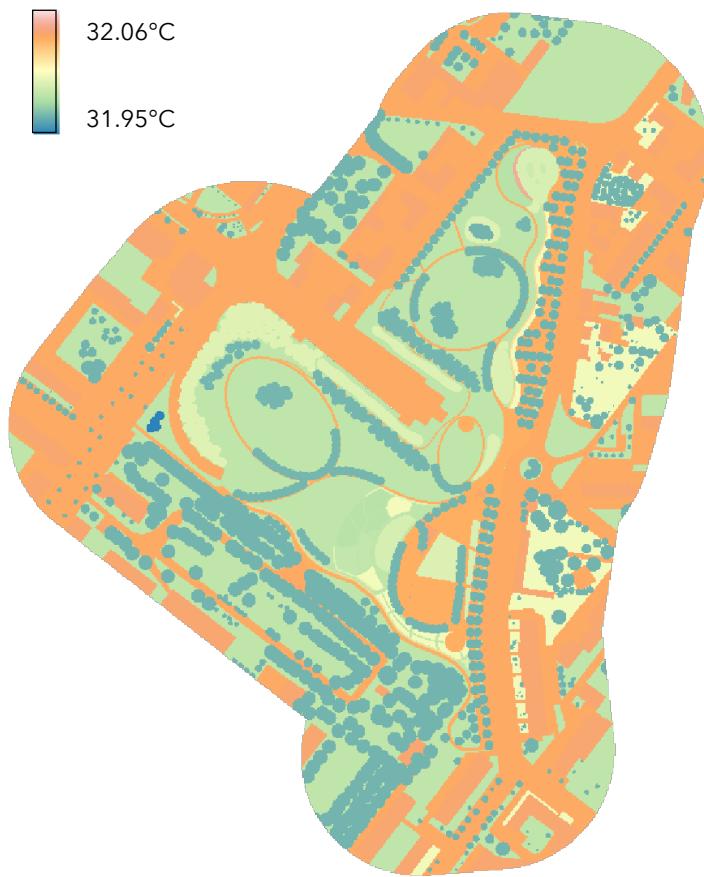
Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

The canopy of trees taller than 2 m increased from 0.49 2.02 ha

The shade has a certain influence on the park's microclimate.

The limited variation of HMI may be due to the parameters set in this study:


- **the weight given to evapotranspiration** (0.6), to consider the evaporation of water from water bodies and vegetation
- different attributes in **the biophysical table**

Kc 'extensive rustic grassland' scenario 1► 0.725
(to reflect park's dryness)

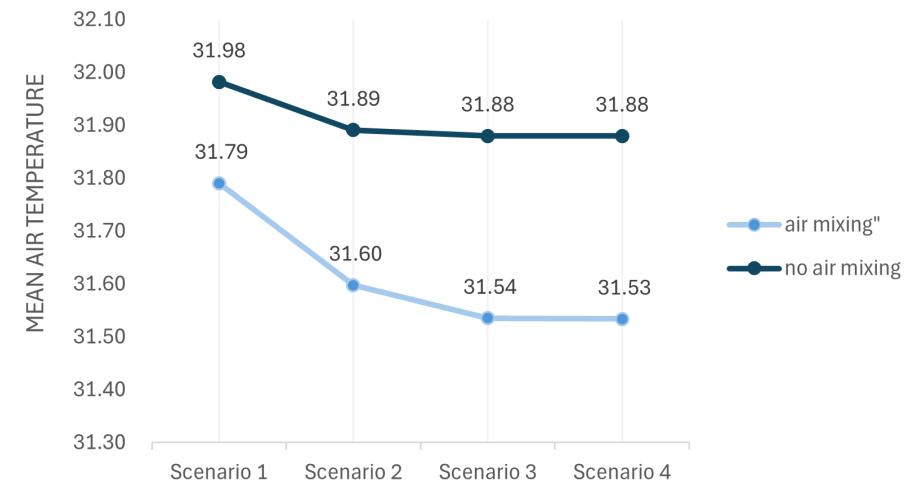
Kc 'extensive rustic grassland' scenario 2-3-4 1.15
(to reflect uniform, well-watered, high-evapotranspiration cover)

The simulated punctual air temperature values within the park were also averaged:

Simulated temperature (air no mixing) Scenario 4

The difference between scenarios 1 and 4 without air mixing is **0.28 °C**, considering the influence of air mixing, this difference drops to **0.10 °C**

Buildings 32.14°C

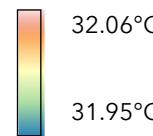

Paved surfaces 32.07°C

Water bodies 31.56°C

Extensive grassland 31.47 °C

Tree canopy cover 31.24°C

Average of the simulated air temperature values within the park perimeter


Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro, Daniele La Rosa, Anacleto Rizzo, Riccardo Privitera

For specific surfaces such as paved areas, extensive grassland, buildings, and tree canopy cover, **temperature differences between 0.6 and 0.90 °C** can be observed.

- █ Stabilized gravel surface
- █ Buildings
- █ Paved surfaces
- █ Bike lane
- █ Concrete impervious surface

- █ Riparian vegetation
- █ Water bodies
- █ Wildflower meadow
- █ Irrigated grassland

Buildings 32.14°C
 Paved surfaces 32.07°C
 Water bodies 31.56°C

Extensive grassland 31.47 °C
 Tree canopy cover 31.24°C

The model underestimates air temperatures near different surfaces compared to real-world conditions, where air temperature in the proximity of impervious surfaces can be a few degrees higher than in green areas.

Limitation of the InVEST model

The cooling effect of water is calculated in the same way as green areas, by always considering:

- shade
- albedo
- evapotranspiration

lucode	LC_DESC	shade	Kc	albedo	green_area
1	Meleto (inerbimento)	0	1.2	0.15	1
2	Pereto (inerbimento)	0	1.2	0.15	1
3	Ciliegio (inerbimento)	0	1.2	0.15	1
4	Pruneto	0	1.15	0.15	1
5	Arbusti tappezzanti	0	0.9	0.15	1
6	Arbusti	0	1	0.18	1
7	Aromatiche	0	0.9	0.15	1
8	Giuggiolo	0	1.15	0.15	1
9	Noccioletto	0	0.9	0.15	1
10	Prato fiorito	0	1.15	0.25	1
17	Wetlands	0	1.05	0.09	1
18	À Asfalto	0	0.4	0.2	0

When considering the contribution of **water bodies**, one parameter (shade) is always missing. The model uses two instead of three, as in the case of green areas.

cooling capacity **can be estimated based on other factors** like:

- wind speed
- relative humidity of the air
- the average depth of the water body
- size, shape, hydrological connectivity

to improving the simulation of HMI and air temperature

This research applied the InVEST UC model to quantify the combined effect of vegetation and water on the park's microclimate by comparing different scenarios at the design scale.

- Thanks to its spatial nature, the InVEST model can be a useful tool to compare and assess transformation scenarios on urban scale or regional, such as urban greening strategies aimed at mitigating the UHI, according to the results emerging from literature reviews.
- The model captures changes in LULC if these are radical, such as a change in land use from impervious surfaces (e.g., paved areas) to extensive grassland. However, InVEST is not suitable for capturing detailed variations in ground cover under different scenarios, and its use is therefore not recommended at the design scale.
- The model is also not suitable for assessing the contribution of water to the heat mitigation process (e.g., the increase in water surfaces from scenario 3 to 4), due to the limitations of the input parameters, which are the same for water bodies and green elements.

Next steps

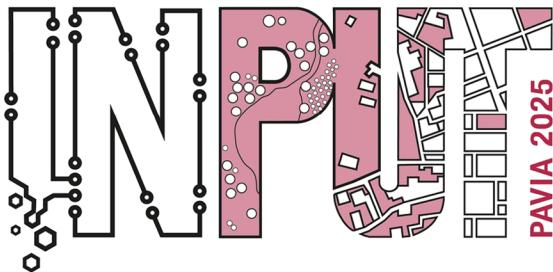
- field temperature measurements will be carried out to compare real data with simulated ones, in order to validate the model
- a qualitative component will be included through questionnaires and interviews to collect people's perceptions of the park.
- Combining both approaches will help to propose and plan interventions to increase its cooling capacity

Deng, Y., Yao, Y., & Zhang, L. (2023). Analysis of urban wetland park cooling effects and their potential influence factors: Evidence from 477 urban wetland parks in China. *Ecological Indicators*, 156.

Yang, G., Yu, Z., Jørgensen, G., & Vejre, H. (2020). How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. *Sustainable Cities and Society*, 53, 101932.

Wu, S., Yang, H., Luo, P., Luo, C., Li, H., Liu, M., Ruan, Y., Zhang, S., Xiang, P., Jia, H., & Cheng, Y. (2021). The effects of the cooling efficiency of urban wetlands in an inland megacity: A case study of Chengdu, Southwest China. *Building and Environment*, 204.

Wu, C., Li, J., Wang, C., Song, C., Chen, Y., Finka, M., & La Rosa, D. (2019). Understanding the relationship between urban blue infrastructure and land surface temperature. *Science of the Total Environment*, 694, 133742.


Zardo, L., Geneletti, D., Pérez-Soba, M., & van Epen, M. (2017). Estimating the cooling capacity of green infrastructures to support urban planning. *Ecosystem Services*, 26, 225-235.

Natural Capital Project (2025) InVEST 3.15.0. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences.

Zawadzka, J. E., Harris, J. A., & Corstanje, R. (2021). Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. *Landscape and Urban Planning*, 214.

Masiero M., Amato G., Laghetto G., Davide Murgese D., Perino M., Allocchio M., Cimini M. (2020) Ecosistemici identificati con riferimento al verde urbano orizzontale e verticale di proprietà comunale presente nel territorio del Comune di Torino.

Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. *Irrigation and Drainage Systems*, 16(1), 33-45.

The 13th International Conference on Innovation in Urban and Regional Planning
Methods, Models and Technologies for Future Cities and Regions

8-9-10 September 2025

UNIVERSITÀ
DI PAVIA

DICAR
DIPARTIMENTO INGEGNERIA
CIVILE ARCHITETTURA

BUILDING
ENGINEERING
ARCHITECTURE

URBANPROJECT
UP
LABORATORY

Application of the InVEST model to calculate the heat mitigation of green and blue elements in urban parks

Nicoletta Denaro¹, Daniele La Rosa¹, Anacleto Rizzo², Riccardo Privitera¹

1 Università di Catania DICAR – Dipartimento Ingegneria Civile e Architettura

2 IRIDRA Srl, Florence, Italy

Pavia - September 09, 2025

PATRONAGE

SPONSORSHIP

